منابع مشابه
Closed state-coupled C-type inactivation in BK channels.
Ion channels regulate ion flow by opening and closing their pore gates. K(+) channels commonly possess two pore gates, one at the intracellular end for fast channel activation/deactivation and the other at the selectivity filter for slow C-type inactivation/recovery. The large-conductance calcium-activated potassium (BK) channel lacks a classic intracellular bundle-crossing activation gate and ...
متن کاملCooperative subunit interactions in C-type inactivation of K channels.
C-type inactivation of potassium channels is distinct from N-terminal mediated (N-type) inactivation and involves a closing of the outer mouth of the channel. We have investigated the role of the individual subunits of the tetrameric channel in the C-type inactivation conformational change by comparing the inactivation rates of channels constructed from different combinations of subunits. The r...
متن کاملInteraction of the S6 proline hinge with N-type and C-type inactivation in Kv1.4 channels.
Several voltage-gated channels share a proline-valine-proline (proline hinge) sequence motif at the intracellular side of S6. We studied the proline hinge in Kv1.4 channels, which inactivate via two mechanisms: N- and C-type. We mutated the second proline to glycine or alanine: P558A, P558G. These mutations were studied in the presence/absence of the N-terminal to separate the effects of the in...
متن کامل4-aminopyridine prevents the conformational changes associated with p/c-type inactivation in shaker channels.
The effect of 4-aminopyridine (4-AP) on Kv channel activation has been extensively investigated, but its interaction with inactivation is less well understood. Voltage-clamp fluorimetry was used to directly monitor the action of 4-AP on conformational changes associated with slow inactivation of Shaker channels. Tetramethylrhodamine-5-maleimide was used to fluorescently label substituted cystei...
متن کاملMolecular determinants of U-type inactivation in Kv2.1 channels.
Kv2.1 channels exhibit a U-shaped voltage-dependence of inactivation that is thought to represent preferential inactivation from preopen closed states. However, the molecular mechanisms underlying so-called U-type inactivation are unknown. We have performed a cysteine scan of the S3-S4 and S5-P-loop linkers and found sites that are important for U-type inactivation. In the S5-P-loop linker, U-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.122